Oxidative stress, hyper-inflammatory responses, and protein glycation are the chief contributing factors in the pathogenesis of several diseases. This study aimed to explore the therapeutic role of myrrh in health management through in vitro and in silico studies. Antioxidant potential, anti-inflammatory potential, antiglycation, and advanced glycation end products (AGEs) formation inhibition activities were determined by various in vitro assays. Molecular docking was performed to predict the non-covalent binding of macromolecules (receptor) and a small molecule (ligand). Myrrh extract contained significant antioxidant activity as reflected by FRAP value (16.12 µg ascorbic acid/100 mg dry weight), the maximum percentage of DPPH scavenging (57.71%), and maximum hydrogen peroxide reducing activity (58.71%) at a concentration of 600 µg/mL. Further, the extract exhibited maximum protection from bovine serum albumin (BSA) denaturation inhibition (53.47%), anti-proteinase action (43.517%), and egg albumin denaturation inhibition (44.95%) at a dose of 600 µg/mL concentration. Myrrh is used in pharmacy as an antiseptic, anti-inflammatory, antimicrobial, antifungal, and anti-venom remedy. This study aimed to explore the antioxidant, anti-inflammatory, antiarthritic, antiglycation, and advanced glycation end products (AGEs) formation inhibition ability of methanolic myrrh extract. It was found that myrrh has good antioxidant potential due to plenty of flavonoids and polyphenolic compounds, as reflected by results of the 2,2′-diphenyl-1-picrylhydrazyl radical (DPPH) assay, FRAP (ferric reducing antioxidant power) test, and hydrogen peroxide reducing test. Furthermore, myrrh methanolic extract was found to be significantly effective against heat-induced albumin denaturation, and percent inhibition of denaturation increases with increased extract concentration. The presence of myrrh extract at a dose of 600 μg/mL decreased browning intensity (59.38%), percent aggregation index (59.88%), and percentage amyloid structure (56.13%). We used molecular docking tools to study the role of myrrh in oxidative stress (Catalase), antioxidant property (Superoxide dismutase), and antiviral property (spike protein S). The molecular docking analysis confirmed four phytoconstituents; 2,3-Furandione, Curzerene, delta-Elemene, and Furanoeudesma-1,3-Diene interact with catalase and superoxide dismutase. Curzerene and Furanoeudesma-1,3-Diene showed remarkable interaction with SARS-CoV-2 spike protein S. Our data suggest that myrrh resin extract can be used to develop a suitable alternative therapy for various diseases linked with oxidative stress, inflammation, glycation, and AGEs.
Read full abstract