High power magnetron sputtering (HiPIMS) discharges generate ions with high kinetic energies in comparison to conventional dc magnetron sputtering. The peculiar shape of the ion energy distribution function (IEDF) is correlated to the formation of localized ionization zones (IZ) in the racetrack of a HiPIMS discharge, so called spokes. This is explained by a local maximum of the electrical potential inside these localized IZ. By using ion energy mass spectrometry, probe experiments and plasma spectroscopy the connection between IZ and IEDFs is evaluated with high temporal resolution. The data of a floating probe next to the target is used to directly monitor the movement of the spokes in the direction. Chromium is used as target material, because the plasma undergoes a sequence from stochastic spoke formation, to regular spoke pattern rotating in the direction to a homogeneous plasma torus with increasing plasma power. In particular, the analysis of the transition from the regular spoke pattern to the homogeneous plasma torus at very high plasma powers shows that the high energy part of the IEDF is not affected and only the low energy part is modified. Consequently, one could consider the homogenous plasma torus at very high plasma powers as a a single ionization zone localized over the complete torus, which is formed by merging individual spokes with increasing power. Details and consequences of that model are discussed.