The influence of cavitation in common-rail diesel nozzles on the soot formation process has been analysed experimentally. The soot formation process was characterized by measuring soot emissions in a single-cylinder engine, which was mounted on a test bench equipped with an opacimeter. In order to do this, operating conditions where the soot oxidation process was equivalent were chosen, whereby differences in the soot formation process were possible to be analysed. The results achieved confirm that cavitation provokes a soot formation process reduction. This reduction can be attributed by combining results of three effects: a reduction of the effective diameter, an increase in effective injection velocity, and an increase in turbulence level inside the nozzle orifice leading to a longer lift-off length. The three effects lead to a decrease in relative fuel/air ratio at the lift-off, therefore explaining the soot formation reduction.
Read full abstract