BackgroundAttempts to use dietary lysozyme (LYZ) as an alternative to antibiotics in broilers have been successful, but further research is needed for effective use. Here, we compared the differences between LYZ and avilamycin (AVI) feed additives for growth performance, gut health and immunity of broilers. One-day old, one hundred and twenty broiler chicks (Ross 308) were randomly allocated into three groups consisting forty birds in each group. Standard diet without supplementation was applied as the control group (I), while the chicks of the other groups were supplemented with 100 mg of AVI per kg diet (AVI, group II), and 90 mg LYZ per kg diet (LYZ, group III) for five consecutive weeks.ResultsBody weight, feed conversion ratio, body weight gain, and European production efficiency factor were markedly (p < 0.05) increased in both AVI and LYZ groups in relation to CON group, but the feed intake and protein efficiency ratio were not affected. Both AVI and LYZ significantly (p < 0.001) upregulated the mRNA expression of ileal interleukin-18 (IL-18), interferon-gamma (IFN-γ), and interleukin-10 (IL-10), interleukin-2 (IL-2), and glutathione peroxidase (GSH-PX) genes compared to CON group. However, IL-2, IL-10, IL-18, and GSH-PX genes were markedly (p < 0.01) upregulated in LYZ compared to the AVI group. LYZ treated group had a significant increase (p < 0.05) in the serological haemagglutination inhibition titers of H5N1 vaccination and a significant decrease (p < 0.0001) in coliform counts compared to control and AVI groups, but all growth parameters were nearly similar between AVI and LYZ groups. The VH and VH/CD were markedly higher in LYZ than AVI and control groups.ConclusionExogenous dietary lysozyme supplementation by a dose of 90 mg/kg broilers’ diet induced better effects on intestinal integrity, fecal bacterial counts, immune response, and growth performance which were comparable to avilamycin. Therefore, dietary lysozyme could safely replace avilamycin in the broiler chickens’ diet. However, further experimental studies regarding the use of lysozyme in commercial broilers, both in vitro and in vivo, targeting more communities of intestinal microbiome and explaining more details about its beneficial effects need to be conducted.