The bright band (BB) is an important symbol of the ice–water transition zone in stratiform precipitation, and the presence or absence of BB will lead to different microphysical processes. In this paper, the characteristics of BB and precipitation characteristics with and without BB in summer at Tibetan Plateau (TP) as well as Central-eastern China (CEC) are analyzed by using Global Precipitation Measurement (GPM) and the fifth generation ECMWF atmospheric reanalysis of the global climates (ERA5) datasets. The results show the freezing level height and BB height in TP are 0.5 km higher than those in CEC. With the increase in rain rate, the BB height decreases in TP but increases in CEC. The BB width becomes wider with the increase in maximum radar reflectivity. Secondly, the maximum reflectivity factor and particle diameter of stratiform precipitation with BB appear at 5 km, while the maximum reflectivity factor of stratiform precipitation without BB and convective precipitation appear near the ground. The particle diameter first decreases and then increases from the cloud top to the ground. Thirdly, the land surface temperature of convective precipitation is about 2.5 °C higher than stratiform precipitation with BB, indicating higher land surface temperatures are more likely to trigger convection. Lastly, BB can lead to a decrease in brightness temperature and an increase in polarized difference at 89 GHZ and 166 GHZ in CEC, likely due to the increasing ice particles in stratiform precipitation with BB.