Abstract

In this paper, Bisection method-based algorithm for the computation of optimal path length of terrestrial microwave link is presented. Also, performance analysis of the algorithm is presented in terms of the convergence cycle of the algorithm. The impact of various link parameters on the convergence cycle of the algorithm is also presented. Mathlab program was used to carry out sample numerical computation for a microwave link having the following parameters: frequency (f) = 12 GHz, transmit power (P_T) = 10dBm, transmitter antenna gain (G_T) = 35 dBi, receiver antenna gain (G_R) = 35 dBi, fade margin (〖fm〗_s) =20dB, receiver sensitivity (P_S) = -80dBm, Rain Zone = N, point refractivity gradient (dN1) = -400, link percentage outage (po)=0.01% . The results showed that the Bisection algorithm converged at the 17th cycle. It was found from the analysis that the convergence cycle of the algorithm varied linearly with frequency, decreasing with frequency from a value of 17 at frequency of 12 GHz to 15 at a frequency of 45 GHz. On the other hand, the convergence cycle varied nonlinearly with percentage availability of the link. Also, for a given frequency and link percentage availability the convergence cycle increased with increase in rain rate. The result of the research is very essential for microwave link designers to determine the optimal path length for effective link performance under different link configurations and locations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.