In this study, the interaction effects of CeO2 NPs (250, 500 and 1000 mg L−1) and Se NPs (25, 50 and 75 mg L−1) were evaluated in mung bean (Vigna radiata). Single NPs and their combinations were foliar applied to 45-day old mung bean plants under greenhouse conditions. In each pot, a total volume of 100 mL of NPs suspension was sprayed on the plants shoot in two steps and one-week interval. After 94 days of growth, membrane degradation, antioxidant activity, photosynthetic pigments, and dry matter accumulation were assessed. At 250 and 500 mg CeO2-NPs L−1, there was partial increase of dry matter, stimulated activity of antioxidant enzymes (p ≤ 0.05), and reactive oxygen species (ROS). However, at 1000 mg L−1, CeO2-NPs caused strong accumulation of ROS (p ≤ 0.05), enlargement of starch granules and swelling of chloroplasts. In addition, at such concentration, there was accumulation of starch granules, reduction of photosynthetic pigments, biological nitrogen fixation, chlorosis, and a significant retardation in plant growth, compared with control, (p ≤ 0.05). Combination of Se-NPs (25 and 50 mg L−1) with 250 mg L−1 of CeO2 NPs decreased hydrogen peroxide, improved CAT, Chla, Chlb, and increased dry matter (p ≤ 0.05). At 1000 mg CeO2 NPs L−1, foliar spray of Se-NPs led to Ce accumulation in the cell wall and increased levels of SOD and proline (p ≤ 0.05). Results showed that 25 and 50 mg Se NPs L−1 ameliorate the stress of CeO2 NPs by upregulating photosynthesis pigments, antioxidants, and dry matter accumulation. Therefore, depending on the CeO2 NPs concentration, the mechanisms of Se NPs in modulating CeO2 NPs stress varied; low concentrations of Se NPs may strengthen the metabolism of legumes, and protect them against foliar toxicity of CeO2 NPs in semi-arid ecosystems.
Read full abstract