Roadside noise barrier helps to reduce downwind pollutant concentrations from vehicle emission. This positive characteristic of the construction feature can be explained by its interaction with flow distribution and species dispersion. In this paper, a three-dimensional numerical model has been developed to simulate highway pollutant dispersion—a realizable k-ε model was employed to model turbulent flow, and a non-reaction species dispersion model was applied to simulate species transport. First, numerical models were validated with experimental data, and good agreement was observed. Then, detailed simulations were conducted to study double barriers’ effects on highway pollutant dispersion under different settings: noise barriers with different heights, noise barriers with and without edge effects, and different atmospheric thermal boundary conditions. Results show that: (1) Noise barriers without edge effects cause bigger downwind velocity and turbulence intensity than noise barriers with edge effects. (2) At ground level, lower downwind pollutant concentration and higher pollutant concentration, near upwind barrier and between barriers, are observed for noise barriers without edge effect cases; higher on-road pollutant concentration can be seen near barrier side edges for cases with edge effect. (3) Downwind velocity and turbulence intensity increase as barrier height increases, which causes reduced downwind pollutant concentration. (4) With the same barrier height, under unstable atmospheric boundary condition, the lowest pollutant concentration can be found for both downwind and between barriers. Overall, these findings will provide valuable inputs to noise barrier design, so as to improve roadside neighborhood air quality.
Read full abstract