This study aimed to exploit the superior properties of TiO2, ZnO, SiO2 and Al2O3 inorganic materials to combine them under pressure and investigate their mechanical properties. The hot pressing technique was used to produce new materials. Varying amounts of alumina such as 0, 5, 10, 20 and 30 wt% in compounds was considered. The produced materials were characterized by SEM, EDS and XRD analyses. The microhardness properties of the materials were studied, and their tribological properties under different wear loads, i.e., 10 N, 20 N and 30 N, were investigated for every specimen. In XRD analysis, it was observed that no significant new peaks were formed regarding increasing alumina content. The SEM and EDS characterization analyses showed that the materials had a two-phase structure with complex boundaries, and no clear grain boundaries were formed. Moreover, the elements in the EDS analyses and the compounds in the XRD analyses were found to be in line with each other. In wear tests, it was seen that as the wear load increased, the depth and width of the wear track increased. The highest weight loss under different wear loads was obtained for the Ti55Si15Zn20Al10 material. It was determined that as the Al2O3 wt% increased over 10 wt%, the weight losses decreased. It was observed that there was an increase in the microhardness value generally depending on the increase of alumina content in compounds.