PurposeFusidic acid (FA) and sodium fusidate (SF) have problems in their skin penetration and stability resulting in a reduction in their potency; therefore, the objective of this study was to develop FA and SF nanoemulgels to improve the antibacterial activity of the drugs.MethodsFA and SF nanoemulgel formulations were prepared by the incorporation of FA and SF nanoemulsions with Carbopol hydrogel. First, the drugs were screened for their solubility in different oils and surfactants to choose the suitable oil and surfactants for the drugs, and then the drug nanoemulsion formulations were prepared by a self-nanoemulsifying technique using Tween 80, Span 20 and pine oil. The drug nanoemulgels were evaluated for their particle size, polydispersity index (PDI), rheological behaviour, drug release and anti-microbial activity.ResultsBased on the solubility test, pine oil was the best solubilising oil for both drugs, Tween 80 and Span 20 showed the highest solubilising ability for both the drugs among the surfactants; therefore, they were chosen as surfactant and co-surfactant, respectively. The optimum self-nanoemulsifying formulations showed a particle size for fusidic acid and Sodium fusidate of 140.58 nm and 151.86 nm respectively, and both showed a low PDI below 0.3. After incorporating both drug SNEDDS formulations with Carbopol at different concentrations, the results of the drugs particle size and PDI showed no significant difference. The zeta potential results for both drugs nanoemulgels showed a negative potential with more than 30 mV. All nanoemulgel formulations showed pseudo-plastic behaviour with the highest release pattern at 0.4% Carbopol. The antibacterial activity of both drug nanoemulgel formulations showed superiority over the market product.ConclusionNanoemulgel is a promising delivery system for FA and SF that helps in improving the stability and antibacterial activities of the drugs.
Read full abstract