The fluid-feeding aphid Schlechtendalia chinensis (Bell) induces horned galls on its primary host, the Chinese Sumac (Rhus chinensis Mill). Horned galls are harvested for their high content of tannins, and used in a range of medical and chemical applications. Gall development is a complex and highly controlled physiological process, where the growing insect population manipulates the plant developmental programs that allow the transformation of plant tissue into a gall. In this study, we examine whether Schlechtendalia alters the balance of plant hormones in the host tree as a means to achieve gall formation. For this, we measured concentrations for a series of endogenous hormones, including indole-3-acetic acid (IAA), cytokinin (CTK), gibberellic acid (GA), abscisic acid (ABA), jasmonic acid (JA), salicylic acid (SA), and ethylene (ETH). Specifically, we conducted a time course (namely, 30, 85, 100, 115, 125, 140, 155, and 170 days from gall initiation) analysis, where we measured both gall and leaf samples representing different developmental stages that spanned an entire growing season. To correlate these hormone data with developmental parameters during gall growth, we determined gall volume, tannin content, and aphid population size for the same time points. Interestingly, tannin production rose steeply in the early stages of gall development, while the aphid population size grew little. After this single peak (day 100), tannin concentrations declined moderately and aphid population size increased from then on. This switch in population growth was accompanied by notable changes in plant hormone titers. In general, all hormones but GA were elevated in all sample types isolated from the host tree (gall, leaves near and distant from gall) when compared with samples from an uninfected tree. Most of the elevated hormones showed similar changes over time; however, GA appeared to display the opposite behavior in all samples, suggesting that GA is a key target for controlling gall growth. When tannin concentrations spiked, GA levels peaked as well, while the remaining plant hormones exhibited a decline at that time. Principle component analysis revealed distinct functional groups in our hormone cohort. This yielded three groups comprising (1) CTK, ABA, ETH, and JA, (2) IAA and SA, (3) GA. The fact that GA comprised its own group and exhibited a unique profile during gall development prompted us to examine whether exogenous GA would alter the rate of gall growth. Indeed, we found that ectopic GA significantly accelerated gall growth, and more strongly than all other hormones, consistent with the notion that controlling GA levels within the gall is crucial for stimulating gall development. We propose a model, whereby the host plant downregulates GA concentrations in an attempt to throttle gall growth, while the gall-inducing aphid population counters these attempts.