Abstract

Out of 62 bacterial isolates obtained from the mangrove Avicenniamarina rhizosphere that grows along the Abu Dhabi coast, United Arab Emirates (UAE), an isolate of Pseudoalteromonas maricaloris (Wild type strain) (WT) produced relatively high levels of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase in vitro. Application of this WT strain under greenhouse conditions to A. marina seedlings significantly (P < 0.05), reduced endogenous levels of ACC in the roots and shoots, and significantly (P < 0.05) increased the levels of in planta endogenous plant growth regulators (PGRs) including indole-3-acetic acid (IAA), indole-3-pyruvic acid (IPYA), putrescine (Put), spermidine (Spd) and spermine (Spm) in roots and shoots compared with control mangrove seedlings. WT application has also significantly (P < 0.05) increased photosynthetic pigment contents, photosynthetic carbon assimilation, plant water use efficiency and promoted mangrove seedlings growth characteristics including increased dry weight and length of roots and shoots, total leaf area and the number of the side branches compared with control mangrove seedlings. In comparison, an ACC deaminase non-producing mutant strain (NPM) failed to reduce endogenous levels of ACC in the roots and shoots and also failed to increase endogenous PGRs and photosynthetic pigments and did not promote seedling growth. Both WT and NPM strains were incapable of producing in vitro detectable levels of IAA, IPYA, Gibberellic acid (GA3), zeatin (Z), Put, Spd and Spm in the culture filtrates. This study demonstrated for the first time the ability of ACC deaminase-producing bacteria to promote mangrove growth under greenhouse conditions. P. maricaloris has potential as biological inoculants to promote the growth of mangrove seedlings in afforestation programs in nutrient impoverished sediments in hyper-saline coastal areas in the UAE.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.