Conserved IncI1 and IncHI1 plasmids carrying blaCTX-M-1 have been found circulating in chickens and horses from continental Europe, respectively. In Canada, blaCTX-M-1 is overwhelmingly the most common blaCTX-M variant found in Escherichia coli from chicken and horses and can be recovered at lower frequencies in swine, cattle, and dogs. Whole-genome sequencing has identified a large genetic diversity of isolates carrying this variant, warranting further investigations into the plasmids carrying this gene. Therefore, the objective of this study was to describe the genetic profiles of blaCTX-M-1 plasmids circulating in E. coli from Canadian domestic animals and compare them to those recovered in animals in Europe. Fifty-one blaCTX-M-1 positive E. coli isolates from chicken (n = 14), horses (racetrack horses n = 11; community horses n = 3), swine (n = 7), turkey (n = 6), dogs (n = 5), beef cattle (n = 3), and dairy cattle (n = 2) were selected for plasmid characterization. Sequences were obtained through both Illumina and Oxford Nanopore technologies. Genomes were assembled using either Unicycler hybrid assembly or Flye with polishing performed using Pilon. blaCTX-M-1 was found residing on a plasmid in 45 isolates and chromosomally located in six isolates. A conserved IncI1/ST3 plasmid was identified among chicken (n = 12), turkey (n = 4), swine (n = 6), dog (n = 2), and beef cattle (n = 2) isolates. When compared against publicly available data, these plasmids showed a high degree of similarity to those identified in isolates from poultry and swine in Europe. These results suggest that an epidemic IncI1/ST3 plasmid similar to the one found in Europe is contributing to the spread of blaCTX-M-1 in Canada. A conserved IncHI1/FIA(HI1)/ST2 plasmid was also recovered from nearly all racetrack horse isolates (n = 10). Although IncHI1/ST2 plasmids have been reported among European horse isolates, IncHI1/ST9 plasmids appear to be more widespread. Further studies are necessary to understand the factors contributing to these plasmids’ success in their respective populations.
Read full abstract