ICP-CVD(inductively-coupled Plasma chemical vapor deposition)를 사용하여 $250^{\circ}C$ 기판온도에서 140 nm 두께의 수소화된 비정질 실리콘( ${\alpha}$ -Si:H)을 제조하였다. 그 위에 30 nm-Ni을 열증착기를 이용하여 성막하고, $200{\sim}500^{\circ}C$ 사이에서 $50^{\circ}C$ 간격으로 30분간 진공열처리하여 실리사이드화 처리하였다. 완성된 실리사이드의 처리온도에 따른 실리사이드의 면저항값 변화, 미세구조, 상 분석, 표면조도 변화를 각각 사점면저항측정기, HRXRD(high resolution X-ray diffraction), FE-SEM(field emission scanning electron microscope), TEM(transmission electron microscope), SPM(scanning probe microscope)을 활용하여 확인하였다. $300^{\circ}C$ 에는 고저항상인 $Ni_3Si$ , $400^{\circ}C$ 에서는 중저항상인 $Ni_2Si$ , $450^{\circ}C$ 이상에서 저저항의 나노급 두께의 균일한 NiSi를 확인되었다. SPM결과에서 저저항 상인 NiSi는 $450^{\circ}C$ 에서 RMS(root mean square) 표면조도 값도 12 nm이하로 전체 공정온도를 $450^{\circ}C$ 까지 낮추어 유리와 폴리머기판 등 저온기판에 대응하는 저온 니켈모노실리사이드 공정이 가능하였다. 【We fabricated hydrogenated amorphous silicon(a-Si:H) 140 nm thick film on a $180\;nm-SiO_2/Si$ substrate with an inductively-coupled plasma chemical vapor deposition(ICP-CVD) equipment at $250^{\circ}C$ . Moreover, 30 nm-Ni film was deposited with a thermal-evaporator sequently. Then the film stack was annealed to induce silicides by a rapid thermal annealer(RTA) at $200{\sim}500^{\circ}C$ in every $50^{\circ}C$ for 30 minuets. We employed a four-point tester, high resolution X-ray diffraction(HRXRD), field emission scanning electron microscope(FE-SEM), transmission electron microscope(TEM), and scanning probe microscope(SPM) in order to examine the sheet resistance, phase transformation, in-plane microstructure, cross-sectional microstructure evolution, and surface roughness, respectively. We confirmed that nano-thick high resistive $Ni_3Si$ , mid-resistive $Ni_2Si$ , and low resistive NiSi phases were stable at the temperature of $350{\sim}450^{\circ}C$ , and > $450^{\circ}C$ , respectively. Through SPM analysis, we confirmed the surface roughness of nickel silicide was below 12 nm, which implied that it was superior over employing the glass and polymer substrates.】