Abstract

ABSTRACTNanolaminate materials exhibit increases in hardness and yield strength beyond those expected according to rule of mixtures calculations. Several models have been proposed to explain this enhancement of strength, but conclusive experimental verification is hindered by the complex interaction between ingrown defects, in-plane microstructure and compositional modulation. In this study, mechanisms of plastic deformation in nanolaminates are investigated by in situ TEM straining of epitaxial Cu/Ni nanolaminates grown on Cu (001) single crystal substrates. Two distinct types of deformation are observed. Initial plastic deformation is accommodated by motion of “Orowan” and threading dislocations in a uniform and random fashion. As the stress levels increase, fracture occurs creating a mixed mode crack. Subsequent observations suggest that intense plastic deformation occurs over many bilayers in the direction of crack growth, but is contained to within one or two bilayers in a direction normal to the crack faces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.