Modulation of neuronal impulse pattern is examined by means of a simplified Hodgkin–Huxley type computer model which refers to experimental recordings of cold receptor discharges. This model essentially consists of two potentially oscillating subsystems: a spike generator and a subthreshold oscillator. With addition of noise the model successfully mimics the major types of experimentally recorded impulse patterns and thereby elucidate different resonance behaviors. (1) There is a range of rhythmic spiking or bursting where the spike generator is strongly coupled to the subthreshold oscillator. (2) There is a pacemaker activity of more complex interactions where the spike generator has overtaken part of the control. (3) There is a situation where the two subsystems are decoupled and only resonate with the help of noise.
Read full abstract