One of the challenges of small modular reactors (SMRs) in comparison with large reactors is the greater difficulty in achieving high burnups in smaller cores. With greater neutron leakage through the periphery, a key factor is the neutron economy of the fuel cladding. However, all large supercritical water-cooled reactor (SCWR) concepts have employed neutron-absorbing stainless steels and nickel-based alloys in order to meet all the requirements in terms of corrosion and thermalhydraulics. In order to achieve higher burnups and extend the time between refueling in a SCW-SMR, the use of chromium-coated zirconium alloy as a potential fuel cladding candidate has been explored. Chromium coatings up to a few micrometers thick have shown improved oxidation resistance of zirconium-based claddings under operating conditions relevant to SCWR concepts. In this study, Zr-2.5Nb alloy (UNS R60904) from pressure tube samples was coated using a physical vapor-deposition (PVD) method. Oxidation tests were performed on coated samples at 500 °C and approximately 25 MPa in a refreshed autoclave. The effects of the oxide on heat transfer and hydraulic resistance are also discussed in this study. Last, but not least, this study evaluates the coating cost of the fuel cladding with chromium in a vacuum plasma spray process.