Polytetrafluoroethylene (PTFE) is renowned for its remarkably low friction coefficient (µ ~ 0.1) yet exhibits notably high wear rates (K ~ 104) in dry sliding applications. To mitigate this, various metallic and non-metallic fillers have been explored, consistently demonstrating a reduction in wear rates of unfilled PTFE between 10 and 104 times. Among these fillers, α-Al2O3 is one of the most extensively studied materials. 5 wt% of α-Al2O3 filler into PTFE yields a composite material, PTFE- α-Al2O3, characterized by a wear rate a staggering 104 times lower than unfilled PTFE. This reduction in wear has been attributed to the formation of tribofilms on the PTFE composite and metal counterbody material. These tribofilms emerge due to the interaction between broken fluropolymer chains and environmental water and oxygen. This interaction results in the creation of carboxylate salt groups, which subsequently react with metal/metal oxide particles (both from the counterbody and the metal filler) to form tribofilms. Despite numerous studies scrutinizing the chemical composition of the tribofilms pre- and post-test, the chemical development of these films has remained largely unexplored. In this study, the authors utilize attenuated total reflection infrared spectroscopy (ATR-IR), transmission infrared (IR) spectroscopy, optical microscopy, and stylus profilometry to observe tribofilm development. A thorough topographical and chemical description of the tribofilm is provided via these techniques. The ratio of carboxylate salt groups directly corresponds with improved wear performance and these changes are very local to the worn polymer surface. This discovery contributes to a deeper understanding of the tribological behavior of PTFE-α-Al2O3 composites.Graphical
Read full abstract