Radar systems are a type of sensor that detects radio signals reflected from objects located a long distance from transmitters. For covering a longer range and a higher resolution in the operation of a radar, a high-frequency band and an array antenna are measures to take. Given a limited size to the antenna aperture in the front end of the radar, the choice of a millimeter-wave band leads to a denser layout for the array antenna and a higher antenna gain. Millimeter-wave signals tend to become attenuated faster by a larger loss of the covering material like the radome, implying this disadvantage offsets the advantage of high antenna directivity, compared to the C-band and X-band ones. As the radome is essential to the radar system to protect the array antenna from rain and dust, a metamaterial surface in the layer is suggested to meet multiple objectives. Firstly, the proposed electromagnetic structure is the protection layer for the source of radiation. Secondly, the metasurface does not disturb the millimeter-wave signal and makes its way through the cover layer to the air. This electromagnetically transparent surface transforms the phase distribution of the incident wave into the equal phase in the transmitted wave, resulting in an increased antenna gain. This is fabricated and assembled with the array antenna held in a 3D-printed jig with harnessing accessories. It is examined in view of S21 as the transfer coefficient between two ports of the VNA, having the antenna alone and with the metasurface. Additionally, the far-field test comes next to check the validity of the suggested structure and design. The bench test shows around a 7 dB increase in the transfer coefficient, and the anechoic chamber field test gives about a 5 dB improvement in antenna gain for a 24-band GHz array antenna.
Read full abstract