Abstract

A design strategy to alter the radiation characteristics of modular radar printed circuit boards without the need for expensive retooling and remanufacturing is presented in this paper. To this end, a compact radar module including microstrip array antennas integrated with a dielectric rod lens is considered for a demonstration of an X-band radar antenna gain improvement leading to radar detection range enhancement. Using travelling wave theory, the proposed lens is designed to target the excitation of HE11 mode to achieve gain improvement without disturbing reflection coefficients. Using a low-cost rapid-manufacturing 3D-printing technology, two pairs of the 3D-printed dielectric rods integrated with a dielectric housing are designed and fabricated uniformly for a commercially available off-the-shelf radar module. The radar integration with the dielectric rod lens leads to a low-cost and easy-to-fabricate long-range radar system. Compared with the radar without the rods, the design system achieved a measured 6.6 dB gain improvement of the transmitter and receiver antennas which causes doubling the detection range for both elevation and azimuth directions at 10.525 GHz.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call