AlGaInP-based red light emitting diodes (LEDs) are considered as promising light sources in future full-color displays. At present, vertical chip configuration is still the mainstream device structure of AlGaInP-based red LEDs. However, current crowding around p-electrode severely hinders an efficient improvement. Here, we propose a Schottky-contact current blocking layer (SCBL) to enhance current spreading and to improve light extraction efficiency of AlGaInP-based red vertical miniaturized LEDs (mini-LEDs). By utilizing the Schottky contact between ITO and p-GaP, the SCBL can hinder current crowding around the p-electrode. The current is forced to inject into an active region through a p-GaP+ ohmic contact layer, avoiding light absorption by p-electrode. Through the transfer length method, the Schottky contact characteristics between the ITO and p-GaP as well as the ohmic contact characteristics between ITO and p-GaP+ are demonstrated. Benefiting from superior current spreading and improved light extraction, a mini-LED with SCBL realizes an enhancement of 31.8% in external quantum efficiency (EQE) at 20 mA in comparison with a mini-LED without SCBL.
Read full abstract