Abstract
Studies on low-cost sol–gel spin-coated TiO2 thin film with high refractive index (HRI), which may be used as an intermediate layer to enhance the light extraction efficiency (LEE) of a typical bottom-emitting organic light emitting diode (OLED), are reported. The TiO2 solution is prepared using titanium tetra iso-propoxide, acetic acid, and ethanol. Spin coating method is used to deposit TiO2 thin films on glass substrate. Different optical characterizations of as-deposited and annealed (150°C, 300°C, and 450°C) TiO2 thin films on glass substrate are done, from which different properties of the film are derived. Ellipsometric measurement shows shrinkage in the thickness of the as-deposited TiO2 films after annealing at different temperatures. X-ray diffraction reveals amorphous TiO2 formation for all the samples. The RI of the coated film increases with the increase in annealing temperatures. Its value at 633 nm wavelength for the as-deposited film is found to be 2.1, which is quite high and it is seen that this RI can be further increased to 2.78 by annealing the samples at 450°C. This value is comparatively high compared to several other reported values of other researchers. The as-deposited sample reveals highest porosity, which further decreases with rise in annealing temperature. Our calculation of LEE for a typical OLED with the intermediate layer of this HRI as-deposited TiO2 film shows improvement of the LEE. However for annealed films, the experimentally obtained thicknesses are not adequate for this improvement, but it is shown that by increasing the film thickness, further improvement of LEE is possible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.