Waste activated sludge serves an important reservoir for antibiotics within wastewater treatment plants, and understanding the occurrence and evolution of antibiotics during sludge treatment is crucial to mitigate the potential risks of subsequent resource utilization of sludge. This study explores the degradation and transformation mechanisms of three typical antibiotics, oxytetracycline (OTC), ofloxacin (OFL), and azithromycin (AZI) during sludge hydrothermal treatment (HT), and investigates the influence of biopolymers transformation on the fate of these antibiotics. The findings indicate that HT induces a shift of antibiotics from solid-phase adsorption to liquid-phase dissolution in the initial temperature range of 25–90 °C, underscoring this phase's critical role in preparing antibiotics for subsequent degradation phases. Proteins (PN) and humic acids emerge as crucial for antibiotic binding, facilitating their redistribution within sludge. Specifically, the binding capacity sequence of biopolymers to antibiotics is as follows: OFL>OTC>AZI, highlighting that OFL-biopolymers display stronger electrostatic attraction, more available adsorption sites, and more stable binding strength. Furthermore, antibiotic degradation mainly occurs above 90 °C, with AZI being the most temperature-sensitive, degrading 92.97% at 180 °C, followed by OTC (91.26%) and OFL (52.51%). Concurrently, the degradation products of biopolymers compete for active sites to form novel amino acid-antibiotic conjugates, which inhibits the further degradation of antibiotics. These findings illuminate the effects of biopolymers evolution on intricate dynamics of antibiotics fate in sludge HT and are helpful to optimize the sludge HT process for effective antibiotics abatement.
Read full abstract