To investigate the performance of a deep learning (DL) model for segmenting cone-beam computed tomography (CBCT) scans taken before and after mandibular horizontal guided bone regeneration (GBR) to evaluate hard tissue changes. The proposed SegResNet-based DL model was trained on 70 CBCT scans. It was tested on 10 pairs of pre- and post-operative CBCT scans of patients who underwent mandibular horizontal GBR. DL segmentations were compared to semi-automated (SA) segmentations of the same scans. Augmented hard tissue segmentation performance was evaluated by spatially aligning pre- and post-operative CBCT scans and subtracting preoperative segmentations obtained by DL and SA segmentations from the respective postoperative segmentations. The performance of DL compared to SA segmentation was evaluated based on the Dice similarity coefficient (DSC), intersection over the union (IoU), Hausdorff distance (HD95), and volume comparison. The mean DSC and IoU between DL and SA segmentations were 0.96 ± 0.01 and 0.92 ± 0.02 in both pre- and post-operative CBCT scans. While HD95 values between DL and SA segmentations were 0.62mm ± 0.16mm and 0.77mm ± 0.31mm for pre- and post-operative CBCTs respectively. The DSC, IoU and HD95 averaged 0.85 ± 0.08; 0.78 ± 0.07 and 0.91 ± 0.92mm for augmented hard tissue models respectively. Volumes mandible- and augmented hard tissue segmentations did not differ significantly between the DL and SA methods. The SegResNet-based DL model accurately segmented CBCT scans acquired before and after mandibular horizontal GBR. However, the training database must be further increased to increase the model's robustness. Automated DL segmentation could aid treatment planning for GBR and subsequent implant placement procedures and in evaluating hard tissue changes.
Read full abstract