The offshore ac side impedance model of the modular multilevel converter (MMC) based high voltage direct current (HVdc) system is essential for analyzing the interaction stability between MMC-HVdc and the offshore wind power plants. This paper develops the offshore ac side impedance model of an MMC-HVdc system for wind power integration taking the effects of offshore station, dc cable and onshore station into consideration. The dc impedance model of the onshore station is first derived which includes the effects of dual closed loop dc bus voltage control and circulating current control. Then, the dc impedance of the onshore station and dc cable impedance are used to derive the ac side impedance of the offshore station under open loop control. In addition, the influence of the dual closed loop based ac bus voltage and frequency (VF) control on the offshore ac impedance is analytically derived. As a result, the proposed model can be used to reveal the coupling between offshore offshore ac system and dc system as well as to investigate the influence of the dc system and VF controller in the offshore ac impedance of the MMC-HVdc system. Furthermore, the proposed model overcomes the deficiencies in harmonic resonance analysis of MMC-HVdc based offshore wind power integration system. The results of the simulation in PSCAD/EMTDC validate the proposed models and analyses.
Read full abstract