The aim of this study was to examine the effects of ML365, a two-pore potassium channel (K2P) inhibitor, on postoperative cognitive impairment (POCD). A mouse model of POCD was constructed by subjecting aged C57BL/6 mice to exploratory laparotomy. Changes in cognitive function were assessed using the Morris water maze test. Western blotting and qPCR were used to detect hippocampal NLRP3, Caspase-1 and IL-1β expression levels on days 3 and 7 post-surgery. Apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) expression level was also assessed by western blotting. Pathological changes and nerve damage in the hippocampal CA1 and CA3 regions were detected by H&E staining, while the concentration of malondialdehyde (MDA) in the plasma was measured. We found that pretreatment with ML365 (administered intraperitoneally at a dose of 10 mg/kg) 30 min prior to exploratory laparotomy effectively ameliorated POCD in mice. ML365 pretreatment also reduced NLRP3, Caspase-1, ASC and IL-1β expression levels in the hippocampus, improved POCD-induced pathological changes in the hippocampal CA1 and CA3 areas of aged mice, and decreased levels of plasma MDA and oxidative stress. Together, our findings indicate that ML365 can alleviate POCD in mice by inhibiting NLRP3 inflammasome activation in the hippocampus.
Read full abstract