Abstract

BackgroundPostoperative cognitive dysfunction (POCD) is a common complication with its pathophysiological mechanisms not been fully elucidated. Pyroptosis is a novel type of pro-inflammatory cell death and considered to be associated with cognitive dysfunction. Therefore, our study aimed to examine the effect of pyroptosis on sevoflurane-induced cognitive impairment in aged mice as well as its underlying mechanism. MethodsA mice model of cognitive impairment was established by sevoflurane exposure and the levels of reactive oxygen species (ROS), N-GSDMD, cleaved caspase-1, ASC, IL-1β and IL-18, and NLRP3 in hippocampus was determined. To explore the underlying mechanism, a pyroptosis inhibitor, necrosulfonamide (NSA), and a ROS scavenger, N-acetylcysteine (NAC), were administrated before sevoflurane exposure both in vitro and in vivo. Neurobehavioral tests, western blot, transmission electron microscope (TEM) observation, and immunofluorescence staining were performed. ResultsSevoflurane induced hippocampal pyroptosis in the cognitive impairment model. NSA effectively inhibited the pyroptosis and improved cognitive function. Co-labeled immunofluorescence staining suggested sevoflurane induces microglial pyroptosis. Sevoflurane induced pyroptosis accompanied with ROS accumulation in a dose-independent manner in BV2 cells, and NAC effectively reduce the levels of ROS and pyroptosis through NLRP3 inflammasome pathway in both vitro and vivo. Furthermore, NAC could also alleviate sevoflurane-induced cognitive dysfunction. ConclusionsMicroglial pyroptosis in hippocampus mediates sevolfurane-induced cognitive impairment in aged mice via ROS-NLRP3 inflammasome pathway. Both pyroptosis inhibition and ROS scavenging might be potential approaches to ameliorate sevoflurane-induced neurocognitive dysfunction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call