The corrugated double steel plate concrete composite wallboard (CDSCW) exhibits superior axial compressive load-bearing capacity, lateral flexural stiffness, impact resistance, and seismic performance compared to the traditional reinforced concrete wallboard and plane double steel plate concrete composite wallboard (PDSCW). Therefore, it has great potential application in offshore engineering and military engineering. This study designs and fabricates two types of CDSCW specimens. Firstly, a comparative analysis is conducted to examine the damage patterns and dynamic responses of the two specimens under near-field explosion experiments. Secondly, the damage mechanisms and explosion response of CDSCW and PDSCW subjected to close-in explosions are numerically investigated by using ANSYS/LS-DYNA, and the results are then compared with experimental findings. Parameter analysis is performed to assess the influence of concrete thickness, steel plate thickness, and explosive charge on the blast resistance of CDSCWs. Furthermore, a nonlinear resistance equation and an equivalent single degree of freedom (ESDOF) theoretical model for simply supported beams is established to predict the dynamic response of CDSCWs under near-blast loads. This theoretical model considers the constitutive model of bilinear materials and the effect of plastic hinges. The reliability of the proposed theoretical model is verified by comparing the residual deflection of CDSCWs obtained from explosion tests with validated numerical simulation results. The results demonstrate that the CDSCWs, with the same concrete and component dimensions (length, width), exhibit greater flexural stiffness and superior energy dissipation capacity subjected to close-in explosion. Moreover, their blast resistance significantly surpasses that of PDSCWs. In particular, an increase in corrugation depth effectively improves the blast resistance of CDSCWs. The dynamic response equations, based on the established elastic-plastic model and primarily considering bending deformation of the components, precisely predict the dynamic response of simply supported CDSCWs under near-blast loads. consequently, these findings can provide a robust foundation for further research and the design of blast-resistant structures.