Abstract

In the current study, limited research has been conducted on modeling high-velocity impacts and their effect on residual strength. Though the simulation of compression after low-velocity impact are mature, these methods still have some numerical issues when utilized in the case of high-velocity impacts. Thus, a brand-new method suitable for continuous simulation of compression after high-velocity impact was implemented. As for the modeling techniques for 2DTBC, both the research on the model structure and constitutive behavior is still crude and imprecise. To address this situation, a high fidelity multiscale approach which contains a more accurate RUC model, a strain rate sensitive viscoelastic constitutive model and a novel subcell model was established. The HVI and CAI examples were conducted based on this framework and most results showed an error of less than 5% in both the simulation of impact resistance and residual performance. Also, the damage morphologies of simulated results demonstrated its capability and effectiveness.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call