Modeling and optimization are essential tasks that arise in the analysis and design of supply chains (SCs). SC models are essential for understanding emergent behavior such as transactions between participants, inherent value of products exchanged, as well as impact of externalities (e.g., policy and climate) and of constraints. Unfortunately, most users of SC models have limited expertise in mathematical optimization, and this hinders the adoption of advanced decision-making tools. In this work, we present ADAM, a web platform that enables the modeling and optimization of SCs. ADAM facilitates modeling by leveraging intuitive and compact graph-based abstractions that allow the user to express dependencies between locations, products, and participants. ADAM model objects serve as repositories of experimental, technology, and socio-economic data; moreover, the graph abstractions facilitate the organization and exchange of models and provides a natural framework for education and outreach. Here, we discuss the graph abstractions and software design principles behind ADAM, its key functional features and workflows, and application examples.
Read full abstract