Rotaviruses infect cells by binding to specific cell surface molecules including gangliosides, heat shock protein cognate protein 70 (Hsc70), and some integrins. The characterization of cell surface receptors defining viral tropism is crucial for inhibiting entry into the normal cells or the cancer cells. In the present work, several tumor cell-adapted rotavirus isolates were tested for their interaction with some heat shock proteins (HSPs) present in the U-937 cells, derived from a human pleural effusion (histiocytic lymphoma monocyte). This interaction was examined by virus overlay protein-binding (VOPB), immunochemistry, immuno-dot blot assays, and flow cytometry. The results indicated that the rotavirus isolates studied were able to infect U937 cells by interacting with Hsp90, Hsp70, Hsp60, Hsp40, Hsc70, protein disulfide isomerase (PDI), and integrin β3, which are implicated in cellular proliferation, differentiation, and cancer development. Interestingly, these cellular proteins were found to be associated in lipid microdomains (rafts), facilitating in this way eventual sequential interactions of the rotavirus particles with the cell surface receptors. The rotavirus tropism for U937 cells through the use of these cell surface proteins made this rotavirus isolates an attractive target for the development of oncolytic strategies in the context of alternative and complementary treatment of cancer.
Read full abstract