Methods for developing incoming replacement gilts can indirectly and directly influence survivability of their offspring. Indirectly, having proper gilt development reduces culling rates and mortality, which increases longevity and creates a more mature sow herd. Older sows are more likely to have greater immunity than gilts and therefore can pass this along to their pigs in both quantity and quality of colostrum and milk, thus improving piglet survivability. Directly, proper gilt development will maximize mammary gland development which increases colostrum and milk production leading to large, healthy pig. As for the developing gilt at birth, increasing colostrum intake, reducing nursing pressure, providing adequate space allowance, and good growth rate can increase the likelihood that gilts successfully enter and remain in the herd. Light birth weight gilts (<1 kg) or gilts from litters with low birth weight should be removed early in the selection process. Gilts should be weaned at 24 d of age or older and then can be grown in a variety of ways as long as lifetime growth rate is over 600 g/d. Current genetic lines with exceptional growth rate run the risk of being bred too heavy, reducing longevity. On the other hand, restricting feed intake at specific times could be detrimental to mammary development. In these situations, reducing diet amino acid concentration and allowing ad libitum feed is a possible strategy. Gilts should be bred between 135 and 160 kg and at second estrus or later while in a positive metabolic state to increase lifetime productivity and longevity in the herd. Once bred, gilts should be fed to maintain or build body reserves without becoming over-conditioned at farrowing. Proper body condition at farrowing impacts the percentage of pigs born alive as well as colostrum and milk production, and consequently, offspring performance and survivability. Combined with the benefit in pig immunity conferred by an older sow parity structure, gilt development has lasting impacts on offspring performance and survivability.
Read full abstract