Objectives Scientific evidence provides a widened view of differences in immune response between male and female neonates. The X-chromosome codes for several genes important in the innate immune response and neonatal innate immune cells express receptors for, and are inhibited by, maternal sex hormones. We hypothesized that sex differences in innate immune responses may be present in the neonatal population which may contribute to the increased susceptibility of premature males to sepsis. We aimed to examine the in vitro effect of pro-inflammatory stimuli and hormones in neutrophils and monocytes of male and female neonates, to examine the expression of X-linked genes involved in innate immunity and the miRNA profiles in these populations. Methods Preterm infants (n = 21) and term control (n = 19) infants were recruited from the Coombe Women and Infants University Hospital Dublin with ethical approval and explicit consent. The preterm neonates (eight female, 13 male) were recruited with a mean gestation at birth (mean ± SD) of 28 ± 2 weeks and corrected gestation at the time of sampling was 30 + 2.6 weeks. The mean birth weight of preterm neonates was 1084 ± 246 g. Peripheral blood samples were used to analyze immune cell phenotypes, miRNA human panel, and RNA profiles for inflammasome and inflammatory genes. Results Dividing neutrophil results by sex showed no differences in baseline CD11b between sexes among either term or preterm neonates. Examining monocyte CD11b by sex shows, that at baseline, total and classical monocytes have higher CD11b in preterm females than preterm males. Neutrophil TLR2 did not differ between sexes at baseline or following lipopolysaccharide (LPS) exposure. CD11b expression was higher in preterm male non-classical monocytes following Pam3CSK treatment when compared to females, a finding which is unique to our study. Preterm neonates had higher TLR2 expression at baseline in total monocytes, classical monocytes and non-classical monocytes than term. A sex difference was evident between preterm females and term females in TLR2 expression only. Hormone treatment showed no sex differences and there was no detectable difference between males and females in X-linked gene expression. Two miRNAs, miR-212-3p and miR-218-2-3p had significantly higher expression in preterm female than preterm male neonates. Conclusions This study examined immune cell phenotypes and x-linked gene expression in preterm neonates and stratified according to gender. Our findings suggest that the responses of females mature with advancing gestation, whereas male term and preterm neonates have very similar responses. Female preterm neonates have improved monocyte activation than males, which likely reflects improved innate immune function as reflected clinically by their lower risk of sepsis. Dividing results by sex showed changes in preterm and term infants at baseline and following LPS stimulation, a difference which is reflected clinically by infection susceptibility. The sex difference noted is novel and may be limited to the preterm or early neonatal population as TLR2 expression on monocytes of older children does not differ between males and females. The differences shown in female and male innate immune cells likely reflect a superior innate immune defense system in females with sex differences in immune cell maturation. Existing human studies on sex differences in miRNA expression do not include preterm patients, and most frequently use either adult blood or cord blood. Our findings suggest that miRNA profiles are similar in neonates of opposite sexes at term but require further investigation in the preterm population. Our findings, while novel, provide only very limited insights into sex differences in infection susceptibility in the preterm population leaving many areas that require further study. These represent important areas for ongoing clinical and laboratory study and our findings represent an important contribution to exiting literature.
Read full abstract