Fetal ventriculomegaly is a central nervous system disorder commonly seen in prenatal imaging, and the prognosis ranges from normal health to severe dysfunction. Currently, fetal predictive markers associated with postpartum individual neurodevelopmental function are still not available, which increases the difficulty of prenatal diagnosis and clinical management. Constant advancements in magnetic resonance imaging (MRI) technology have brought better accuracy and reliability of MRI applied in the diagnosis, prognosis assessment, and etiology investigation of ventriculomegaly. MRI plays a critical role in prognostic management and prenatal consultation. Nevertheless, due to the potential safety hazards and economic and technical constraints of MRI, it is not the first choice for prenatal imaging diagnosis. Moreover, there are different opinions regarding the measurement results and grading criteria of ultrasound and MRI. At present, it is accepted that three-dimensional volume may provide reliable information for prognosis. However, accurate segmentation and measurement of brain structure remain serious challenges, and no consensus on the MRI measurement of lateral ventricle volume has been reached. In this paper, based on the latest research reports from China and around the world, we reviewed the progress in applying MRI in the prenatal diagnosis and treatment of ventriculomegaly. This review offers a theoretical foundation for further exploration of the role of lateral ventricle volume measurement in disease diagnosis and management. We suggest that researchers combine two-dimensional width with three-dimensional volume in the future to identify the optimal cutoff value for prognostic prediction of fetal ventriculomegaly.
Read full abstract