Rock image classification is a fundamental and crucial task in the creation of geological surveys. Traditional rock image classification methods mainly rely on manual operation, resulting in high costs and unstable accuracy. While existing methods based on deep learning models have overcome the limitations of traditional methods and achieved intelligent image classification, they still suffer from low accuracy due to suboptimal network structures. In this study, a rock image classification model based on EfficientNet and a triplet attention mechanism is proposed to achieve accurate end-to-end classification. The model was built on EfficientNet, which boasts an efficient network structure thanks to NAS technology and a compound model scaling method, thus achieving high accuracy for rock image classification. Additionally, the triplet attention mechanism was introduced to address the shortcoming of EfficientNet in feature expression and enable the model to fully capture the channel and spatial attention information of rock images, further improving accuracy. During network training, transfer learning was employed by loading pre-trained model parameters into the classification model, which accelerated convergence and reduced training time. The results show that the classification model with transfer learning achieved 92.6% accuracy in the training set and 93.2% Top-1 accuracy in the test set, outperforming other mainstream models and demonstrating strong robustness and generalization ability.
Read full abstract