Abstract

Rock image classification is a significant part of geological research. Compared with traditional image classification methods, rock image classification methods based on deep learning models have the great advantage in terms of automatic image features extraction. However, the rock classification accuracies of existing deep learning models are unsatisfied due to the weak feature extraction ability of the network model. In this study, a deep residual neural network (ResNet) model with the transfer learning method is proposed to establish the corresponding rock automatic classification model for seven kinds of rock images. ResNet34 introduces the residual structure to make it have an excellent effect in the field of image classification, which extracts high-quality rock image features and avoids information loss. The transfer learning method abstracts the deep features from the shallow features, and better express the rock texture features for classification in the case of fewer rock images. To improve the generalization of the model, a total of 3,82,536 rock images were generated for training via image slicing and data augmentation. The network parameters trained on the Texture Library dataset which contains 47 types of texture images and reflect the characteristics of rocks are used for transfer learning. This pre-trained weight is loaded when training the ResNet34 model with the rock dataset. Then the model parameters are fine-tuned to transfer the model to the rock classification problem. The experimental results show that the accuracy of the model without transfer learning reached 88.1%, while the model using transfer learning achieved an accuracy of 99.1%. Aiming at geological engineering field investigation, this paper studies the embedded deployment application of the rock classification network. The proposed rock classification network model is transplanted to an embedded platform. By designing a rock classification system, the off-line rock classification is realized, which provides a new solution for the rock classification problem in the geological survey. The deep residual neural network and transfer learning method used in this paper can automatically classify rock features without manually extracting. These methods reduce the influence of subjective factors and make the rock classification process more automatic and intelligent.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.