Cervical cancer is one of the most commonly diagnosed cancers worldwide, and it is particularly prevalent among women living in developing countries. Traditional classification algorithms often require segmentation and feature extraction techniques to detect cervical cancer. In contrast, convolutional neural networks (CNN) models require large datasets to reduce overfitting and poor generalization. Based on limited datasets, transfer learning was applied directly to pap smear images to perform a classification task. A comprehensive comparison of 16 pre-trained models (VGG16, VGG19, ResNet50, ResNet50V2, ResNet101, ResNet101V2, ResNet152, ResNet152V2, DenseNet121, DenseNet169, DenseNet201, MobileNet, XceptionNet, InceptionV3, and InceptionResNetV2) were carried out for cervical cancer classification by relying on the Herlev dataset and Sipakmed dataset. A comparison of the results revealed that ResNet50 achieved 95% accuracy both for 2-class classification and for 7-class classification using the Herlev dataset. Based on the Sipakmed dataset, VGG16 obtained an accuracy of 99.95% for 2-class and 5-class classification, DenseNet121 achieved an accuracy of 97.65% for 3-class classification. Our findings indicate that DTL models are suitable for automating cervical cancer screening, providing more accurate and efficient results than manual screening.
Read full abstract