The detection of change in remote-sensing images is broadly applicable to many fields. In recent years, both supervised and unsupervised methods have demonstrated excellent capacity to detect changes in high-resolution images. However, most of these methods are sensitive to noise, and their performance significantly deteriorates when dealing with remote-sensing images that have been contaminated by mixed random noises. Moreover, supervised methods require that samples are manually labeled for training, which is time-consuming and labor-intensive. This study proposes a new unsupervised change-detection (CD) framework that is resilient to mixed random noise called self-supervised denoising network-based unsupervised change-detection coupling FCM_SICM and EMD (SSDNet-FSE). It consists of two components, namely a denoising module and a CD module. The proposed method first utilizes a self-supervised denoising network with real 3D weight attention mechanisms to reconstruct noisy images. Then, a noise-resistant fuzzy C-means clustering algorithm (FCM_SICM) is used to decompose the mixed pixels of reconstructed images into multiple signal classes by exploiting local spatial information, spectral information, and membership linkage. Next, the noise-resistant Earth mover’s distance (EMD) is used to calculate the distance between signal-class centers and the corresponding fuzzy memberships of bitemporal pixels and generate a map of the magnitude of change. Finally, automatic thresholding is undertaken to binarize the change-magnitude map into the final CD map. The results of experiments conducted on five public datasets prove the superior noise-resistant performance of the proposed method over six state-of-the-art CD competitors and confirm its effectiveness and potential for practical application.
Read full abstract