Deep learning has garnered increasing attention in human activity detection due to its advantages, such as not relying on expert knowledge and automatic feature extraction. However, the existing deep learning-based approaches are primarily confined to recognizing specific types of human activities, which hinders scientific decision-making and comprehensive environmental protection. Therefore, there is an urgent need to develop a deep learning model to address multiple-type human activity detection with finer-resolution images. In this study, we proposed a new multi-task learning model (named PE-MLNet) to simultaneously achieve change detection and land use classification in GF-6 bitemporal images. Meanwhile, we also designed a pooling enhancement module (PEM) to accurately capture multi-scale change details from the bitemporal feature maps through combining differencing and concatenating branches. An independent annotated dataset at Yellow River Delta was taken to examine the effectiveness of PE-MLNet. The results showed that PE-MLNet exhibited obvious improvements in both detection accuracy and detail handling compared with other existing methods. Further analysis uncovered that the areas of buildings, roads, and oil depots has obviously increased, while the farmland and wetland areas largely decreased over the five years, indicating an expansion of human activities and their increased impacts on natural environments.
Read full abstract