Photos shared by social media users act as an approach in identifying tourist activity. Popular tourist attractions are judged based on the large number of photos or high photo density. In Bantul Regency, Indonesia, beaches have diverse attractions which tourists can enjoy and immortalize through photos. Analyzing the contents of photos on Flickr provides information on the type(s) of beaches or coastal attractions preferred by tourists. This study examined the availability of geotagged Flickr photos to assist in making relevant beach tourism management policies. It employed pattern analysis with the average nearest neighbor, density analysis with kernel density estimation, image content analysis with tourist attraction as the variable, and overlay analysis to formulate recommendations for beach tourism management based on the popularity level of the attractions. The results indicate that each of the local beaches offers different attractions with varying popularity levels and that natural beauty is the main feature attracting tourists to visit all beaches, except Baros. Based on the pattern analysis, the Flickr photos are clustered on several beaches of high popularity, such as Parangtritis, Baros, Depok, and Cemara Sewu. By using geotagged Flickr photo data and refers to the concept of tourism supply and demand, recommendations for developing the attractive features on these beaches have been compiled according to their respective themes and popularity levels to target specific tourist market segments and design integrated tour or travel packages.
Read full abstract