Echinacoside (ECH) is an anti-fibrotic phenylethanoid glycoside derived from the Cistanche plant that protects against cardiac dysfunction by mitigating apoptosis, oxidative stress, and fibrosis. Nevertheless, ECH's precise function and mechanisms in addressing cardiac fibrosis are still not fully understood. In our current investigation, we induced cardiac fibrosis in mice by administering Angiotensin II (Ang II) and subsequently assessed the effects of ECH treatment four weeks post-fibrosis induction. Additionally, in an in vitro setting, we exposed cardiac fibroblasts (CFs) to Ang II to prove the anti-fibrotic mechanisms of ECH. ECH treatment effectively reversed cardiac fibrosis in the mice model. ECH treatment significantly reduced the levels of fibrosis-related genes, such as α-SMA, Collagen I, and Collagen III (all, P<0.001). Moreover, it reduced the number of apoptotic cells and regulated the expression of apoptosis-related genes, such as BAX and BCL-2 (all, P<0.001). ECH treatment also positively affected serum levels of markers associated with cardiac fibrosis, including LDH, CK-MB, ANP, BNP, CTnl, and CTnT (all, P<0.001), in the in vivo experiments. In the in vitro studies, ECH pretreatment alleviated cardiac fibroblast apoptosis and reduced cell migration, collagen deposition, and MMP expression (all, P<0.001). In our in vivo and in vitro investigations, we observed that ECH treatment reversed the down-regulation of SIRT1 and up-regulation of IL-11 following cardiac fibrosis. The results suggest that the protective effects of ECH may involve regulating the SIRT1/IL-11 pathway. ECH may protect against Ang II-induced cardiac fibrosis via the SIRT1/IL-11 pathway.
Read full abstract