Chronic obstructive pulmonary disease (COPD) is a highly prevalent chronic respiratory disease characterised by irreversible airways obstruction associated with chronic airways inflammation and remodelling, while the pathogenesis and the mechanistic differences between patients remain to be fully elucidated. We previously reported that alarmin cytokine IL-33 may contribute to the production of autoantibodies against respiratory epithelial cells. Here we expand the hypothesis that pulmonary autoimmune responses induced by airway microbiota also contribute to the progression of COPD. We focused on Edwardsiella tarda which we detected uniquely in the induced sputum of patients with acute exacerbations of COPD. Pernasal challenge of the airways of WT mice with supernatants of cultured E. tarda induced marked, elevated expression of IL-33 in the lung tissues. Immunisation of animals with supernatants of cultured E. tarda resulted in significantly elevated airways inflammation, the formation of tertiary lymphatic structures and significantly elevated proportions of T follicular helper T cells in the lung tissue and mediastinal lymph nodes. Interestingly, such challenge also induced production of IgG autoantibodies directed against lung tissue lysate, alveolar epithelial cell proteins and elastin fragment, while putrescine, one of metabolites generated by the bacterium, might play an important role in the autoantibody production. Furthermore, all of these effects were partly but significantly abrogated in mice with deletion of the IL-33 receptor ST2. Collectively, these data support the hypothesis that COPD is progressed at least partly by airways microbiota such as E. tarda initiating autoimmune attack of the airways epithelium mediated at least partly through the IL-33-ST2 axis.
Read full abstract