Abstract

Multiple sclerosis (MS) is a chronic autoimmune disease in the central nervous system. Forskolin (FSK) is a plant-derived diterpene with excellent immunomodulatory properties and has not been systematically reported for treating MS. This study investigated the therapeutic effects of FSK on cellular and animal MS models and preliminarily explored related mechanisms. The results showed that FSK suppressed the inflammatory response, reduced the expression of STEAP4, and relieved iron deposition in BV-2 cells pretreated by LPS at the cellular level. Meanwhile, at the animal level, FSK treatment halted the progression of experimental autoimmune encephalomyelitis (EAE), alleviated the damage at the lesion sites, reduced the concentration of proinflammatory factors in peripheral blood, and inhibited the immune response of peripheral immune organs in EAE mice. Besides, FSK treatment decreased the expression of STEAP4 in the spinal cord and effectively restored the iron balance in the brain, spinal cord, and serum of EAE mice. Further investigation showed that FSK can reduce IL-17 expression, prevent the differentiation of TH17 cells, and inhibit the calcium signaling pathway. Thus, these results demonstrate that FSK may have the potential to treat MS clinically.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.