A mathematical model of non-obstructive human periodic breathing (Cheyne-Stokes respiration) or central sleep apnea (CSA) is described which focused on explaining recently reported non-linear behavior. Evidence was presented that CHF (chronic heart failure)-CSA and ICSA (idiopathic central sleep apnea) both involved limit cycle oscillations. The validity of applying linear control theory for stabilization must then be re-examined. Critical threshold values and ranges of parameters were predicted which caused a change (bifurcation) from limit cycle periodic breathing to stable breathing. Changes in lung volume were predicted to form a bifurcation during CHF-CSA where stability and instability can involve a lung volume change as small as 0.1 l. CSA therapy based on reducing control loop gain was predicted to be relatively ineffective during stable limit cycle oscillation. The relative ratios of durations of ventilation to apnea (T(v)/T(a)) during periodic breathing were primarily determined by peripheral chemoreceptor dynamics during crescendo, de-crescendo, and apnea phases of CSA.
Read full abstract