The causal relationships between gut microbiota, blood metabolites, and stroke and its subtypes remain unclear. This study aims to uncover the causal associations using Mendelian randomization. We initially identify Single-Nucleotide Polymorphisms (SNPs) correlated with gut microbiota and blood metabolites as instrumental variables (IVs) from the summary statistics in Genome-Wide Association Study (GWAS) to evaluate their potential causal associations with stroke and its subtypes. We proceed with a two-step Mendelian randomization analysis aiming to determine whether blood metabolites mediate the relationships between gut microbiota and stroke or its subtypes. We identified the genetic predictions of 12, 11, and 10 particular gut microbiota were associated with stroke, ischemic stroke, and intracerebral hemorrhage respectively. Inverse variance weighted (IVW) analysis disclosed Alistipes (OR [95%CI]: 1.11[1.00,1.23]), Streptococcus (OR [95%CI]: 1.17[1.05,1.30]), and Porphyromonadaceae (OR [95%CI]: 2.41[1.09,5.31]) as the primary causal effects on stroke, ischemic stroke, and ICH, respectively. We determined that 8, 11, and 1 blood metabolites were causally related to stroke, ischemic stroke, and ICH, respectively. Among these metabolites, Citrate (OR [95%CI]: 2.39[1.32,4.34]) and Beta-hydroxyisovalerate (OR [95%CI]: 2.54[1.62,3.97]) had the foremost causal effect on stroke and ischemic stroke, respectively, whereas Glutaroyl carnitine evidenced a causal effect on ICH. Furthermore, our study revealed that Tetradecanedioate marginally mediated the causal effects of Paraprevotella on stroke and ischemic stroke. This study established a causal link between gut microbiota, plasma metabolites, and stroke. It revealed a marginal pathway, shedding new light on the intricate interactions among gut microbes, blood metabolites, stroke, and their underlying mechanisms.
Read full abstract