Abstract

Immune checkpoint inhibitors (ICIs) can cause profound immune-related adverse events (irAEs). The host genetic background is likely to play a role in irAE susceptibility because the presentation of toxicity varies among patients and many do not develop irAEs despite continued ICI use. We sought to identify potential genetic markers conferring risk for irAEs. We conducted a pilot exploratory study in 89 melanoma patients who received ICIs (44 with irAEs, and 45 without irAEs after at least 1year from starting treatment). Genotyping was performed using the Infinium Multi-Ethnic Global-8 v1.0 Bead Chip. The genotype data were extracted using PLINK (v1.90b3.34) and processed for quality control. Population structure-based clustering was carried out using IBS matrix, pairwise population concordance test (p < 1 × 10-3), and phenotype distribution for all study participants, resulting in seven population structure-based clusters. In the analytical stage, 599,931 variants in autosomal chromosomes were included for the association study. The association test was performed using an additive genetic model with exact logistic regression, adjusted for age, sex, and population cluster. A total of 30 variants or single-nucleotide polymorphisms with p < 1 × 10-4 were identified; 12 were associated with an increased risk of irAEs, and the remaining 18 were associated with a decreased risk. Overall, nine of the identified single-nucleotide polymorphisms mapped to eight unique genes that have been associated with autoimmunity or inflammatory diseases. Several genetic variants associated with irAEs were identified. Additional larger studies are needed to validate these findings and establish their potential functional relevance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call