Pest attack, disease incidence, and nutrient deficiency are the major factors limiting the yield of paddy. Therefore, the paper proposes a classification system for the identification of pest, disease, and nutrient deficiency classes. This approach initially preprocesses leaf images using entropy filtering followed by a leaf segmentation process. Multiple layers are then constructed on the leaf image through which features are extracted. The Gray Level Co-occurrence Matrix (GLCM) algorithm and Principal Component Analysis (PCA) are used to extract the global texture features of the leaf image. A 1D-signal sequence is constructed on each layer, which is decomposed by the Empirical Mode Decomposition algorithm from which the phase features are estimated. The features are trained/classified using the decision tree classifiers that classify the pest attack, disease incidence, and nutrient deficiency categories. The proposed approach provides a precision, accuracy, specificity, sensitivity, and F1-score of 97 %, 97.88 %, 96.52 %, 96.7 %, and 96.7 % respectively.
Read full abstract