In the multiple object tracking task, participants are asked to keep targets separate from identical distractors as all items move randomly. It is well known that simple manipulations such as object speed and number of distractors dramatically alter the number of targets that are successfully tracked, but very little is known about what causes this variation in performance. One possibility is that participants tend to lose track of objects (dropping) more frequently under these conditions. Another is that the tendency to confuse a target with a distractor increases (swapping). These two mechanisms have very different implications for the attentional architecture underlying tracking. However, behavioral data alone cannot differentiate between these possibilities. In the current study, we used an electrophysiological marker of the number of items being actively tracked to assess which type of errors tended to occur during speed and distractor load manipulations. Our neural measures suggest that increased distractor load led to an increased likelihood of confusing targets with distractors while increased speed led to an increased chance of a target item being dropped. Behavioral experiments designed to test this novel prediction support this assertion.
Read full abstract