A lateral charge-profiling technique based on local-flatband-voltage (V <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">FB</sub> )monitoring using optical-substrate-current spectroscopy (I <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Sub,</sub> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">photo</sub> spectroscopy) in nitride-based charge-trap flash (CTF) memories is proposed. Under optical illumination by photons with above-bandgap energy E <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">ph</sub> (>E <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">g,Si</sub> ), I <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Sub,</sub> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">photo</sub> is abruptly increased at the gate voltage V <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">G</sub> =V <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">FB</sub> due to a sudden increase of the excess minority-carrier diffusion current. As expected in this principle, while the single-step feature of the I <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Sub,</sub> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">photo</sub> -V <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">G</sub> curve is observed in the case of N-MOSFETs, a multistep response is clearly observed in nitride-based CTF memories. The mechanism of steplike I <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Sub,</sub> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">photo</sub> spectroscopy is analyzed, supported by analytical models, and verified by comparison with TCAD simulation results. The results show that the height of the step corresponds to the lateral length L <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">TC</sub> of the region, over which localized trapped charges are distributed, and its width to the density Q <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">nit</sub> (x)=qN <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">nit</sub> (x) [C/cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> ] in the nitride storage layer. Based on the proposed I <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Sub,</sub> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">photo</sub> spectroscopy, lateral charge profiling is demonstrated in a programmed NROM cell. The validity of the proposed I <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Sub,</sub> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">photo</sub> spectroscopy is confirmed by comparing the measured I <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">D</sub> -V <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">G</sub> characteristics with TCAD simulation incorporating the extracted N <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">nit</sub> (x) by I <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">Sub,</sub> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">photo</sub> spectroscopy. The proposed lateral charge-profiling technique is expected to be a useful technique for extracting the trapped-charge distribution in NROM and/or multibit CTF memories. This extraction technique has advantages of electrical stress free, exclusion of the effect from interface traps, and the applicability to devices with large gate leakage current.