The identification of novel proteins displaying cytostatic and/or cytotoxic actions that could eventually be used for gene therapy is a major issue in cancer research. Data from the literature suggested that the immediate-early ICP0 protein from herpes simplex virus type 1 (HSV-1) could fulfill these properties as it had been observed that this protein is involved in arrest of cell growth at the G1/S and G2/M phases of the cell cycle and that deletion of ICP0 from HSV-1 or HSV-1-recombinant vectors significantly reduced their cytotoxicity. The molecular basis of its action is likely related to the ability of ICP0, which possesses E3-ubiquitin ligase activity, to target destruction of key cellular proteins, including centromeric proteins, resulting in abnormal chromosome segregation, unusual cytokinesis, and emergence of nuclear morphological aberrations. However, neither the gene therapy potential of ICP0 on its own nor its action on primary quiescent cells has been assessed to date. The aim of this work was therefore to evaluate the antiproliferative and cytotoxic properties of ICP0 on a human glioblastoma cell line and on quiescent primary cells, and to explore whether this protein has a potential for gene therapy of cancer. HSV-1-based amplicon particles were generated following a recently described method that produces relatively high titers of vector stocks that are essentially free of helper virus. These vectors express either wild-type ICP0 or FXE, a RING finger mutated inactive form of ICP0, together with reporter green fluorescent protein (GFP). The vectors were used to infect Gli36 cells, which derive from a human glioblastome, and cultured rat primary cardiomyocytes and brain cells, two well-established models of non-dividing cells. Expression and localization of ICP0 and FXE, as well as their action on centromeres and nuclear morphology, were evaluated by Western blotting, indirect immune fluorescence, and confocal microscopy using specific antibodies and DAPI labeling. The impact of ICP0 on cell growth, toxicity, and viability was evaluated in the different cells using a variety of methods, including FACS analysis after propidium iodide and AnnexinV staining, crystal violet staining, clonogenic capability, caspase 3 activation, MTT tests, and release of lactate dehydrogenase, after infection with the different vectors. The three cell types under study showed high levels of transduction by amplicons and strong expression of GFP, ICP0, and FXE transgenic proteins. Wild-type ICP0, but not FXE, induced centromeric disruption, appearance of micronuclei, arrest of proliferation, and significant cell death in glioblastoma Gli36 cells. In contrast, neither micronuclei formation nor any other sign of cell toxicity could be observed in cultured primary cardiomyocytes or brain cells, as evaluated by MTT tests and crystal violet staining. Furthermore, in the case of cardiomyocytes, expression of ICP0 did not interfere with beating as cells continued to beat at the same frequency as non-infected cells for several days post-infection. Neither AnnexinV early staining nor caspase 3 activation was observed in dying infected Gli36 cells, suggesting that these cells were not entering apoptosis. In contrast, release of lactate dehydrogenase by infected Gli36 cells suggested a necrotic way of death. ICP0 induced a strong cytostatic action followed by significant cell death on the glioblastoma Gli36 cell line. In contrast, neither cell death nor any other evidence of ICP0-induced toxicity affecting major physiological parameters was observed in primary cultured cardiomyoctes and brain cells, two models of primary non-cycling cells. These results suggest that ICP0 has gene therapy potential and could represent the first member of a novel family of directly acting proteins that could be used to treat cancers.
Read full abstract